
Womersley flow

Description of the problem

We consider the fluid flow through a straight pipe of length l and radius R. Fluid is assumed to
be incompressible with density ̺ and viscosity µ. Unknowns in the problem are velocity of the fluid v

and pressure p. The coordinate system in R
3 we choose as in the figure: Points in R

3 we denote by

R

L
x1

x2

x3

WF

x = (x1, x2, x3). The flow is governed by prescribing the pressure at both pipe’s ends, i.e.

p(x, t)|x1=0 = p0(t), p(x, t)|x1=l = pL(t), (1)

for given time dependant functions p0 and pL; on the sequel we assume that they are 2T− periodic. There
ia an additional assumption in (1): the pressure at pipe’s ends is independent of the space variable, i.e.
constant on each pipe’s ends. This assumption allows important simplification of the problem. Still, the
usage of the boundary condition as in (1) in hemodynamics is unclear since measuring pressure on two cross-
sections in an non-invasive way is questionable. For instance, using color doppler, 2-d velocity profile can
be obtained but with questionable accuracy. This kind of fluid flow problems was considered by a British
mathematician John Ronald Womersley, see https://en.wikipedia.org/wiki/John_R._Womersley.

Since the forcing that drives the flow is 2T−periodic we can look for the 2T−periodic solution given
by the velocity v and pressure p. Mathematical formulation of the problem is then given by:

find 2T−periodic functions v and p such that

̺
∂v

∂t
− µ∆v + grad p = 0 u cijevi, t > 0,

div v = 0 u cijevi, t > 0 (inkompresibilnost),

v = 0 na plaštu cijevi, t > 0 (viskoznost fluida),

p(x, t)|x1=0 = p0(t), p(x, t)|x1=l = pL(t), t > 0.



























(2)

• The equation (2)1 is nonstationary (i.e., evolution) Stokes equation; in this special case of the flow
through a pipe (pressure at the pipe’s ends is constant in the space, the pipe is straight and with
the constant cross–section) the same analysis can be applied at the nonlinear analogue, i.e., the
Navier-Stokes equation (in (2)1 the nonlinear transport term (vgrad)v is added).
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• The system (2) gives an approximation of the blood flow in straight parts of arteries; Womersley, in
1955., see [3], found a closed formula fo the solution of (2) for particular p0 and pL.

• Lately, the problem as in (2) was explored by Heywood, Rannacher i Turek (1996) and Veneziani
(2000). In both papers the boundary condition of the type (2)4 is discussed and justified; furthermore
Veneziani shows numerically existence of counterflow for sinusoidal pressure drop p0 − pL.

In the sequel we repeat and extend this topic.

Simplification of the problem

It can be shown that the problem (2) is well posed in variational (weak) sense, see [1] or [2]; the
solution (v, p) exists and is unique (the pressure is unique up to a constant, as usual). The condition of
2T−periodicity of the solution replaces prescription of the initial condition for the velocity.

We try with the following ansatz:

v(x1, x2, x3, t) = u(x2, x3, t) e1 time–dependent Poisseuille flow,

p(x1, x2, x3, t) =
pl(t)− p0(t)

l
x1 + p0(t),

u 2T − periodic skalar function.



















(3)

The flow with the velocity profile as in (2)1 is laminar; every such is also incompressible, i.e., the equation
(2)2 is fulfilled as the last two equations of the system (2)1. The boundary condition (2)4 is fulfilled by the
pressure of the form (3)2. From (2), and from the Navier-Stokes system, we obtain the following parabolic
problem:

̺
∂u

∂t
− µ∆2,3u+

pl − p0
l

= 0, x2
2
+ x2

3
< R2, t > 0,

u 2T − periodic function,

u = 0 za x2
2
+ x2

3
= R2, t > 0.



















(4)

Here we use the notation ∆2,3 =
∂2

∂x2

2

+ ∂2

∂x2

3

.

Let

a(t) =
pl(t)− p0(t)

l

and introduce the polar coordinates (r, ϕ). Since there is no explicit dependance on ϕ in (4), we assume
that (without changing the notation for the velocity function)

u(x2, x3, t) = u(r, t).

As in polar coordinates we have

∆ =
1

r

∂

∂r
(r

∂

∂r
) +

1

r2
∂2

∂ϕ2
,

from (4) we obtain the problem

̺
∂u

∂t
− µ

1

r

∂

∂r
(r

∂

∂r
)u+ a = 0, r ∈ (0, R), t > 0,

u 2T − periodic function,

u(R, t) = 0, t > 0.



















(5)
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By the assumption a is 2T−periodic function. Such functions can be expanded in the classical Fourier
series on [0, 2T ]; note that the convergence in the series will depend on the smoothness of a. For the
moment let us assume that

a(t) = α cosωt+ β sinωt, (6)

where α, β ∈ R, α2 + β2 > 0, are given and

ω =
k π

T
za neki k ∈ {0, 1, . . .}.

For such functions a the solution of the problem (4) can be written in a closed form using complex Bessel
functions.

However if (6) does not hold, for example if a is general 2T−periodic function, a possible numerical
approximation of (4) can be built as in the following three steps.

1. step. Approximate a by n−th partial sum its Fourier series,

Sn(a) =
a0(a)

2
+

n
∑

k=1

(ak(a) cosωkt+ bk(a) sinωkt);

ωk = kπ/T , ak(a) and bk(a) are the Fourier coefficients of the function a, i.e.,

ak(a) =
1

T

∫

2T

0

a(t) cos ωkt dt, k = 0, 1, . . . ,

bk(a) =
1

T

∫

2T

0

a(t) sinωkt dt, k = 1, 2, . . . ,

2. step. For k ∈ {0, 1, . . . , n} we solve the problem (4) with ak of the form (6) instead of a,

ak(t) = ak(a) cosωkt+ bk(a) sinωkt;

its solution we denote by uk.

3. step. Define the function Un = u0 + . . .+ un which is, by the linearity of the problem (4), reasonable
approximation of the solution of (4).

The form of the function a from (6) suggest the following form of the solution of (4):

u(r, t) = c(r) cosωt+ s(r) sinωt, (7)

where c and s are unknown functions. Inserting (7) in (5)1 we obtain the following system for c and s:

−µ
d

dr
(r c′(r))− ̺ω s(r) = −β,

−µ
d

dr
(r s′(r)) + ̺ω c(r) = −α,

The condition of 2T−periodicity is fulfilled because of (7), and boundary condition (5)3 is reduced to

c(R) = s(R) = 0.

Since the above problem is singular boundary value problem on (0, R) with regular singularity in r = 0,
we add the boundedness of the solution as the boundary condition in r = 0; in this case this boundary
condition is effectively expressed by

c′(0) = s′(0) = 0.
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Let

J =

[

0 −1

1 0

]

, X(r) =

[

s(r)

c(r)

]

, B =

[

−β

−α

]

.

System for functions c and s is then given by:

−µ [rX′(r)]′ + rω̺JX(r) = rB, r ∈ (0, R),

X
′(0) = 0, X(R) = 0.







(8)

Womersley (1955) solved similar system by a closed formula. Let

a(t) = Re(A exp(iωt));

where A is given complex number, i imaginary unit, Re denotes real part of the complex number and ω is
as before, see (6). Let ν = µ/̺ (kinematical viscosity). Then the function

Re

{

A

ρ

1

iω

[

1−
J0(ri

3

2

√

ω
ν
)

J0(Ri
3

2

√

ω
ν
)

]

exp(iωt)

}

is a solution of the problem (5) (the Womersley solution). Here J0 is Bessel function of zeroth order with
complex argument.

Visualization of the solution

As in the poiseuille case we again conclude that the velocity is equal on all cross–sections, which
implies that it is enough to visualize the solution on one cross–section. However, here the velocity is time
t dependent. Therefore we need animation to fully describe the solution. One screenshot is given by The

assumed axial symmetry the solution on all cross–sections depends only on the distance to the center of
the cross–section. Therefore it is enough to present the solution on one diameter. The velocity profile here

connects all vectors.
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Figure 1: small radius, profile close to parabolic

Figure 2: larger radius, counterflow observed

Different types of the solution can be seen on the following screenshots of Womersley solutions.
For the prescribed pressures

p0(t) = 7 + 10 sinωt, pL(t) = 0

we obtain a solution of the Navier-Stokes system as a sum of two terms, the Poiseuille velocity and one

Womersley solution (for ω). The solutions for different radiuses are given on the following figures We

Figure 3: small radius
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Figure 4: middle radius

Figure 5: large radius

can note that there are times at which the pressure is negative, but the average pressure is positive. This
implies that overall flow will be directed from entrance (z = 0) to exit (z = L). The velocity is shown
to be significantly radius dependant. If the radius is small at some times the flow is globally in opposite
direction. However if the radius is large enough the flow is directed in the same direction at all times, while
for some radiuses in between these cases there appears only local counterflow. Similar effect can be seen
with respect to the viscosity of the fluid.
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